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Cosmological ~4, ~b 6 and Sine-Gordon Theories with 
Broken Symmetry 

Huang Baofa I and Wang Jingchang 1 
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Particular solutions to the Einstein equations with cosmological constant are 
presented and discussed for an isotropic, spatially homogeneous, and spatially 
flat space-time in the case that the matter fields are ~b 4, ~b 6, and sine-Gordon 
fields. 

1. INTRODUCTION 

The study of quantum field theory in curved space-time has become 
increasingly relevant since the introduction of the inflationary universe scen- 
arios. The theory is normally formulated in fiat space-time, but the behavior 
in a curved space-time may be vastly different in several important aspects. 
In this paper, we describe a particular solution to the Einstein equations for 
a spatially fiat (k = 0) Robertson-Walker space-time. The matter content is 
a real scalar field, possessed of a self-interaction according to the Lagrangian 
(Linde, 1979) 

1 ~e= ~ ~u~ 0u0~- v(~) (1.1) 
The metric is 

g.o dx  u dx  ~ = dt  2 - R 2(t)( dx  2 + d f  + dz 2) (1.2) 

The Euler-Lagrange equation obtained by varying the action S 

(1 .3) 
d 

is 

[]~+ r>(O)=0 (1.4) 
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Here overdots denote a partial derivative with respect to time, 

[](~=_g"~gb;~, g-=det(g~o) (1.5) 

A semicolon denotes a covariant derivative. 
If the scalar field is required to share the symmetry of the space-time, 

then q~= q~(t) and (1.4) becomes (with (b=dr~/dt) 

k 4; + v(q~)=0 (1.6) ~ + 3 ~  

The energy-momentum tensor is obtained by functional differentiation 
of the action (1.3) with respect to the metric tensor (Birrell and Davies, 
1982), that is, 

2 8S 
T,o - (1.7) 8 g u~ 

which yields 

Tuo = O.~b ~4~- ~gu~ (1.8) 

The Einstein equations 
1 Ruo+ ~gu~R= T.~-Ag.~ (1.9) 

where Ru~, R, T.o, and A are the Ricci tensor, Ricci scalar, energy- 
momentum tensor, and cosmological constant, respectively, give the two 
independent equations 

3~ 2= �89 V(O) + A  (1.10) 

2d) + 305 z= _�89 + V(r + A  (1.11) 

where o(t)  is defined by R(t)= e ~~176 
The Bianchi identities T'~;o=0 are trivially satisfied since ~ satis- 

fies (1.4). 
In other words, not all of equations (1.6), (1.10), and (1.11) are inde- 

pendent, which can be seen explicitly upon substitution of (1.10) in (1.11) 
to get 

6) = -�89 2 (1.12) 

Now multiplication of (1.6) by q~ with the use of (1.12) results in 

~b~+ 12d = 6o)6) (1.13) 

which integrates immediately to become (1.10), where the constant can be 
taken to be A. 
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2. 4 4 FIELD 

Suppose (Linde, 1979) 

V(~b) = �89 z + �88 4 (2.1) 

The Einstein equations are 

1 , '2_, 2 . 2 +  �88 (2.2) 36} 2=~q~ t i m  q~ 

26} +3o) 2= _�89 �89 2+ �88 (2.3) 

It can now be shown that (2.2) and (2.3) admit a solution for ~b of the 
form ~b=k e"' with k and p real constants; using this form of  ~b in (1.12) 
yields 

6} = - J  (k2p e2pt--c), c =  const  (2.4) 

Substituting in (2.2) and (2.4) and equating powers of e p' shows that 
the solution must have 

3 A =3c2, p2-+'m2= --apc, )~= ~p2 (2.5) 

Suppose that we now choose A > 0 and ~. > 0 and take p > 0 and c > 0, 
so that p = 2(~/3) ~/2. Then, writing k = q~0(t = 0), the solution is written as 

d? (t) = 4o exp[2()~/3)a/2t] (2.6) 

R( t )=Roexp{ (4~2 /8){1-exp4[ (A . /3 )~ /2 t ] }+(A/3) l /2 t }  (2.7) 

where the constant obtained in the course of integrating equation (2.4) has 
been chosen so that 

R(t  = O) = Ro 

Equations (2.5) show that Sgn{m 2} = -Sgn{s  so that the field is in a 
state of  broken symmetry, with the minima of the potential energy V(~b)= 
1 9 + 1 ~  4 located at ~b = + (u/ . f~) ,  where u 2 = - m  2 (Linde, 1979). 

One thus expects that asymptotically q~ ~ -4- (u/.,j~). Examination of the 
solutions (2.6) and (2.7) shows that this is not the case. In fact, as t + - 0 %  

~ 0 and R + 0 (the solution is thus asymptotically static). Also, both q~ 
and R are finite as t ~ 0. There is a singularity as t --+ oo, ~b + 0% and R -+ 0. 

We may also take p < 0  and c<0 ,  so that p=-2( )~ /3 )  ~/2. The solution 
may be written as 

~b (t) = q}o exp[-2(~./3)~/2t] (2.8) 

R ( t ) = R o e x p { ( O ~ / 8 ) { 1 - e x p [ - 4 ( 2 / 3 ) ~ / 2 t ] } - ( A / 3 ) l / 2 t }  (2.9) 

Equation (2.5) shows that Sgn{m 2} =-Sgn{2} .  
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It can be shown that as t --, 0% q~ and R ~ 0 (the solution is thus asymp- 
totically static). Also, both ~b and R are finite as t --, 0. There is a singularity 
as t ~ - o o ,  ~b--. oo, and R---, 0. 

Suppose that we now choose A = 0 ,  ~,>0, and take p > 0  or p < 0 ,  so 
that p = +2(~/3)v< The solution may be written 

(t) = 49o exp[+Z(s (2.10) 

R ( t ) = R o e x p { ( ~ / 8 ) { 1 - e x p [ ~ 4 ( A , / 3 ) l n t ] } }  (2.11) 

It can be shown that as t ~  0% ~b~ oo (0) and R ~ 0  (Roexp ~b02/8); the 
solution is thus singular (asymptotically static). Also, both q~ and R are finite 
as t--. 0. The solution is asymptotically static (singular) as t - - . -0% q~ ~ 0 
(oo), and R ~ R0 exp q~/8 (0). 

Conclusion: The energy density on the right-hand side of equation (2.2) 
becomes infinite there. 

3. 46 FIELD 

Suppose 

" 
zAq~ +~l~ (3.1) 

The Einstein equations are 

3O52= �89 �89 2+ �88 4_t_ llt~ 6_1_ A (3.2) 

2di + 3o5 2 = - �89 q~2 + �89 2 + �88 + ~lq~6 + A (3.3) 

It can now be shown that (3.2) and (3.3) admit a solution for ~b of the 
form ~b = k  ctgh pt. With k and p real constants, using this form of ~b in 
(1.12) yields 

d) = �89 �89 ctgh 3 pt  - ctgh pt) + c 
(3.4) 

c-- const 

Substituting in (3.2) and (3.4) and equating powers of  ctghpt  shows 
that the solutions must have 

' Z'k2 A =- �89  2, m 2= - k 2 ( Z +  �89 (3.5) c=0,  l=~p  / , 

Suppose that we now choose l > 0  and A < 0  and t a k e p > 0  or p < 0 ,  so 
that p = -4-2u2(-lA) w4. Then, writing k = qg0 = ~b (t ~ • oo), we can write the 
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solution as 

q5 (t) = ~o ctgh[:k21/2(-lA)l/4t] 

R( t )  = Ro exp{ -  �89 sinh[• 

+ ~ ctgh2[:k:21/2(-lm)l/4t] } + c! } 

(3.6) 

(3.7) 

where the constant obtained in the course of integrating equation (3.4) has 
been chosen so that 

k 2 
cl =-~  (ln sinh pto + �88 ctgh 2 pto) R(  t = to) = Ro, 

Equations (3.5) show that Sgn{m 2} = - S g n { s  l}. Thus, the field is in 
a state of  broken symmetry with the minima of the potential energy 

located at 

V(~b) = �89 2 + ~  ~b a + ~-l~b 6 

~)='-~I--~ll "~'-(~2~ df-u2tl/2-]l/27j j 

where u 2= --m 2. One thus expects that asymptotically 

7j j 

Examination of  the solutions (3.6) and (3.7) shows that this is not the 
case. In fact, as t ~  + ~ ,  q~ ~ ~b0 (-~b0) and R ~ 0  (singularity). As t ~  - o G  
~b ~ -~bo (~b0) and R ~ singularity (0). As t --* 0, ~b ~ oo and R ~ 0. Hence, 
the energy density on the fight-hand side of  equation (3.2) becomes infinite 
there. 

4. SINE-GORDON FIELD 

Suppose (Rajarreman, 1975) 

t2 
V(~b) =-~ (1 - c o s / ~ b )  

P 
(4.1) 
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The Einstein equations are 

1 . 2 + a  (1 -cos/7~b) + A  (4.2) 3~ ~b /7 

263 + 3(b 2 ----- - -  _1 q~2.4_ a (1 -- COS/74)) + A (4.3) 
2 /7 

It can now be shown that (4.2) and (4.3) admit a solution for ~b of the 
form 

, )  
~b = ~  (cos -t tghpt  + srk) 

with k and p real constants. Using this form of 4b in (1.12) yields 

a) = - ~ tgh pt + c, c = const (4.4) 

Substituting in (4.2) and (4.3) and equating powers of tghpt  shows that the 
solution must have 

c=0 ,  A 12p2 6p2 
- + a / 7  . . . .  ( 4 . 5 )  

/74 ' /72 

Comparing the sine-Gordon field with the 4b 4 field, we easily obtain 
m 2 = aft. Suppose that we now choose A > 0 and take p > 0 or p < 0, so that 
p =  :~�89 w2. Then by writing st//7 = ~b0 = ~b(t=0), we can write the 
solution as 

2 (A~ 1/2 -] ksrt (4.6) 
) 

where the constant obtained in the course of integrating equation (4.4) has 
been chosen so that R(t--, 0)=R0.  Equation (4.5) shows that Sgn{m 2} = 
-Sgn{p2}, so that the field is a state of broken symmetry with the minima 
of the potential energy V(q~) = (a//7)(1 - cos/74)) located at 4b = -t-~r//7. One 
thus expects that asymptotically ~b= +st//7. Examination of the solutions 
(4.7) and (4.6) shows that this is not the case. In fact, as t --+ oo, 4b --+ 2ksr/ 
/7[(2sr//7)(k + 1)] and R--+ 0 (0). Also both ~b and R are finite as t---> 0. As 
t --+ -oo,  q~ --+ 2sr//7(k + 1) (2ksr//7) and R --+ 0 (0). Hence, the energy density 
on the right-hand side of equation (4.2) becomes infinite as k --+ oo. 
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5. CONCLUSIONS 

The Lagrangians in equation (1.1) are often encountered with positive- 
definite mass terms in discussions of symmetry breaking. Although the solu- 
tion given here can be assumed to be extremely typical of cosmologies con- 
taining broken-symmetric matter fields, it is possible that the existence of 
the above solutions may have consequences for discussions of symmetry 
breaking in a cosmological context. 
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